Specific Inhibition of β-Catenin in Jeko-1 Mantle Cell Lymphoma Cell Line Decreases Proliferation and Induces Apoptosis

نویسندگان

  • Jinshui He
  • Yiqun Huang
  • Jianmin Weng
  • Liyun Xiao
  • Kaizhi Weng
  • Xudong Ma
چکیده

BACKGROUND The canonical Wnt signaling pathway has been considered as a potent oncogenic signaling in the initiation and progression of hematological malignancies. As a key regulator of the Wnt signaling pathway, the role of β-catenin in mantle cell lymphoma (MCL) pathogenesis and progression was investigated in this study. MATERIAL AND METHODS A total of 30 MCL samples were collected from patients and were examined for the expression of β-catenin and p-GSK3β using immunohistochemical (IHC) staining. Further in vitro studies employed MTT and Western blot assays detecting proliferation and apoptosis-related proteins in MCL cell line Jeko-1, which were transfected with β-catenin shRNA or specific inhibitor XAV939. RESULTS Expression of β-catenin and phosphorylated glycogen synthase kinase-3 beta (p-GSK3β) in MCL was significantly higher than those in controlled samples. In vitro studies indicated that β-catenin knockdown significantly inhibited cell proliferation and induced apoptosis in Jeko-1 cells. Furthermore, XAV939 induced apoptosis and growth arrest in Jeko-1 cells. Both inhibitory agents increased Bax and caspase 3 proteins, and decreased Bcl-2, c-Myc, and Cyclin D1 proteins. CONCLUSIONS The specific inhibition of β-catenin induces apoptosis and growth arrest, making it a potential therapeutic target against MCL.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Gallic Acid Inhibits Proliferation and Induces Apoptosis in Lymphoblastic Leukemia Cell Line (C121)

AbstractLeukemia is known as the world’s fifth most prevalent cancer. New cytotoxic drugs have created considerable progress in the treatment, but side effects are still the important cause of mortality. Plant derivatives have been recently considered as important sources for the treatment of various diseases, including cancer. Gallic acid (GA) is a polyhydroxyphenolic compound with a wide rang...

متن کامل

Evaluation of Growth Inhibitory and Apoptosis Inducing Activity of Human Calprotectin on the Human Gastric Cell Line (AGS)

Background: Calprotectin is cytotoxic agent that its anti-tumor effects are governed through suppression of topoisomerase II a key enzyme in apoptosis. In previous studies, cytotoxicity and apoptotic effects of calprotectin are shown on different cancer cell lines, but not human gastric cancer cell lines. In the present study, cytotoxicity and apoptotic effects of calprotectin on human gastric ...

متن کامل

Role of Wnt/β-catenin pathway in inducing autophagy and apoptosis in multiple myeloma cells

β-catenin is the downstream effector of the Wnt signaling pathway, which regulates cell proliferation and differentiation. Activation of the Wnt/β-catenin signaling pathway has been shown to positively correlate with prognosis in several types of malignancies. The present study aimed to determine the role of β-catenin in multiple myeloma (MM) cells using lentiviruses expressing small interferin...

متن کامل

Quercetin protects PC-12 cells against hypoxia injury by down-regulation of miR-122

Objective(s): Impairment of nerve cells of brain induced by hypoxia results in energy-deprivation and dysfunction, which accompanies with neurons apoptosis. Improving function of nerve cells is important for treating cerebral anoxia. This study aimed to investigate the role of Quercetin (Quer) in hypoxia-induced injury of pheochromocytoma (PC-12) cells. Materials and Methods: PC-12 cells were c...

متن کامل

The Role of Wnt/β-catenin Signaling Pathway in Rat Primordial Germ Cells Reprogramming and Induction into Pluripotent State

 Primordial Germ Cells (PGCs) are unipotent precursors of the gametes. PGCs can give rise to a type of pluripotent stem cells in vitro that are called embryonic germ (EG) cells. PGCs can also acquire such pluripotency in vivo and generate teratomas. Under specific culture conditions, PGCs can be reprogrammed to embryonic germ cells which are capable of expression of key pluripotency marker...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره 21  شماره 

صفحات  -

تاریخ انتشار 2015